题目描述(ID:12166)
标题: 3.3-1骑马修栅栏
标签: 图结构 回路以及欧拉回路
详情:
armer John每年有很多栅栏要修理。他总是骑着马穿过每一个栅栏并修复它破损的地方。

John是一个与其他农民一样懒的人。他讨厌骑马,因此从来不两次经过一个栅栏。你必须编一个程序,读入栅栏网络的描述,并计算出一条修栅栏的路径,使每个栅栏都恰好被经过一次。John能从任何一个顶点(即两个栅栏的交点)开始骑马,在任意一个顶点结束。

每一个栅栏连接两个顶点,顶点用1到500标号(虽然有的农场并没有500个顶点)。一个顶点上可连接任意多(>=1)个栅栏。两顶点间可能有多个栅栏。所有栅栏都是连通的(也就是你可以从任意一个栅栏到达另外的所有栅栏)。
你的程序必须输出骑马的路径(用路上依次经过的顶点号码表示)。我们如果把输出的路径看成是一个500进制的数,那么当存在多组解的情况下,输出500进制表示法中最小的一个 (也就是输出第一位较小的,如果还有多组解,输出第二位较小的,等等)。

输入数据保证至少有一个解。
输入格式:
第1行: 一个整数F(1 <= F <= 1024),表示栅栏的数目
第2到F+1行: 每行两个整数i, j(1 <= i,j <= 500)表示这条栅栏连接i与j号顶点。
输出格式:
输出应当有F+1行,每行一个整数,依次表示路径经过的顶点号。注意数据可能有多组解,但是只有上面题目要求的那一组解是认为正确的。
样例:

输入

9
1 2
2 3
3 4
4 2
4 5
2 5
5 6
5 7
4 6

输出

1
2
3
4
2
5
4
6
5
7

输入

12
1 9
1 5
5 3
5 4
3 2
4 2
4 6
6 8
6 7
8 7
9 8
5 8

输出

4
2
3
5
1
9
8
5
4
6
7
8
6

输入

5
1 5
5 2
5 3
3 4
5 4

输出

1
5
3
4
5
2
登录并解答