题目描述(ID:12172)
标题: 2.4-3牛的旅行
标签: 图结构 最短路
详情: 农民 John的农场里有很多牧区。有的路径连接一些特定的牧区。一片相互连通的牧区称为一个牧场。但是就目前而言,你能看到至少有两个牧场之间不能通过任何路径连通。这样,农民 John就有了多个牧场。
John想在牧场里添加一条路径(注意,恰好一条)。对这条路径有以下限制:
一个牧场的直径就是牧场中最远的两个牧区的距离(本题中所提到的所有距离指的都是最短的距离)。考虑如下的有5个牧区的牧场,牧区用“*”表示,路径用直线表示。每一个牧区都有自己的坐标:


整个牧场直径约为22.071068。
注意,如果两条路径中途相交,我们不认为它们是连通的。只有两条路径在同一个牧区相交,我们才认为它们是连通的。
输入文件包括牧区、它们各自的坐标,还有一个如下的对称邻接矩阵:


其他邻接表中可能直接使用行列而不使用字母来表示每一个牧区。输入数据中不包括牧区的名字。
输入文件至少包括两个不连通的牧区。
请编程找出一条连接两个不同牧场的路径,使得连上这条路径后,这个更大的新牧场有最小的直径。输出在所有牧场中最小的可能的直径。
输入格式:
第1行: 一个整数N (1 <= N <= 150), 表示牧区数;
第2到N+1行: 每行两个整数X,Y (0 <= X ,Y<= 100000), 表示N个牧区的坐标。注意每个 牧区的坐标都是不一样的;
第N+2行到第2*N+1行: 每行包括N个数字(0或1) 表示如上文描述的对称邻接矩阵。
输出格式:
只有一行,包括一个实数,表示所求直径。数字保留六位小数。
只需要打到小数点后六位即可,不要做任何特别的四舍五入处理。
样例:

输入

8
10 10
15 10
20 10
15 15
20 15
30 15
25 10
30 10
01000000
10111000
01001000
01001000
01110000
00000010
00000101
00000010

输出

22.071068
登录并解答